Search results for "collinear resonance ionization spectroscopy"

showing 2 items of 2 documents

Optimising the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE

2020

© 2019 The CRIS experiment at CERN-ISOLDE is a dedicated laser spectroscopy setup for high-resolution hyperfine structure measurements of nuclear observables of exotic isotopes. Between 2015 and 2018 developments have been made to improve the background suppression, laser-atom overlap and automation of the beamline. Furthermore, a new ion source setup has been developed for offline studies. Here we present the latest technical developments and future perspectives for the experiment. ispartof: Nuclear Instruments & Methods In Physics Research Section B-Beam Interactions With Materials And Atoms vol:463 pages:384-389 ispartof: location:SWITZERLAND, CERN, Geneva status: published

Nuclear and High Energy Physicshyperfine structuretutkimuslaitteetspektroskopiaCERN-ISOLDEhigh-resolution7. Clean energy01 natural sciencesNuclear physicsCRISIonization0103 physical sciencesDalton Nuclear InstitutePhysics::Atomic PhysicsNuclear Experiment010306 general physicsSpectroscopyInstrumentationHyperfine structurePhysicsLarge Hadron Collider010308 nuclear & particles physicsResonanceIon sourceResearchInstitutes_Networks_Beacons/dalton_nuclear_instituteBeamlineBackground suppressionlaser spectroscopycollinear resonance ionization spectroscopyPhysics::Accelerator PhysicsydinfysiikkaNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Simulation of the relative atomic populations of elements 1 ≤ Z ≤89 following charge exchange tested with collinear resonance ionization spectroscopy…

2019

© 2019 The Authors Calculations of the neutralisation cross-section and relative population of atomic states were performed for ions beams (1 ≤ Z ≤ 89) at 5 and 40 keV incident on free sodium and potassium atoms. To test the validity of the calculations, the population distribution of indium ions incident on a vapour of sodium was measured at an intermediate energy of 20 keV. The relative populations of the 5s 2 5p 2 P 1/2 and 5s 2 5p 2 P 3/2 states in indium were measured using collinear resonance ionization spectroscopy and found to be consistent with the calculations. Charge exchange contributions to high-resolution lineshapes were also investigated and found to be reproduced by the calc…

Materials sciencekaliumElectron captureSodiumPotassiumPopulationspektroskopiachemistry.chemical_elementindium01 natural sciencesAnalytical ChemistryIonatomifysiikkaPhysics in General0103 physical sciencesPhysics::Atomic Physicselectron capturenatrium010306 general physicseducationSpectroscopyInstrumentationsodiumSpectroscopyeducation.field_of_studyatomic populationsIsotopeta114010308 nuclear & particles physicspotassiumcharge exchangeAtomic and Molecular Physics and Opticssemi-classical impact parameterchemistrylaser spectroscopycollinear resonance ionization spectroscopyAtomic physicsIndiumSpectrochimica Acta Part B: Atomic Spectroscopy
researchProduct